- 相關推薦
熒光燈常用燈絲預熱電路
摘要:電子鎮流器由于具有節能,發光無頻閃和易于實現聯網控制(如IEC929附錄E的有關要求)等一系列優點,而得到了廣泛的應用。熒光燈如采用適當的燈絲預熱方法,對提高熒光燈的壽命有非常重要的作用。介紹了幾種常用的熒光燈燈絲預熱方法及特點。1 常用照明方法與特點
常用的電光源主要有熱致發光光源,氣體放電發光光源,固體發光光源等三類。
熱致發光光源如白熾燈,它利用斯涅藩-波爾茲曼定律,即物體溫度越高,它幅射出的能量越大。這可用式(1)表示。
E=μ×ξ×T4(1)
式中:E為物體在溫度T時單位面積和單位時間內的紅外幅射總能量;
圖1
μ為斯涅藩-波爾茲曼常數(μ=5.6697×10-12W/cm2·K4),ξ為比幅射率,即物體表面幅射本領與黑體幅射本領之比值;
T為物體的絕對溫度。
利用熱致發光原理制成的電光源制作簡單,成本低,但是發光效率低,只有11%左右,而其余的能量則以熱的形式消耗掉(紅外、熱能消耗分別占69%及20%)。
圖2
固體發光光源,如發光二極管、等離子體發光器件等,盡管它們的發光效率高,但目前還不能做到大功率(如上百瓦),所以,固體發光器件要進入大規模實用階段還有一段距離。
氣體放電發光器件,如熒光燈(Florescent)、金鹵燈(Hilide)、高強度放電燈(HID)等,它們的發光效率為普通白熾燈的幾倍。由于氣體放電燈的功率可以做得較大(上千瓦),發光效率又高,是一種綠色照明光源。其中,熒光燈是一種充有氬氣的低氣壓汞氣體放電燈,發光效率和壽命都比白熾燈高。熒光燈發光效率約23%,紅外、熱能占總耗能的36%及41%。熒光燈發光均勻、亮度適中、光色柔和,是理想的室內照明燈,在照明中得到了廣泛的應用。熒光燈是通過引燃燈管內稀薄汞蒸汽進行弧光放電,汞離子受激產生紫外線,激發燈管內壁涂層熒光粉發出可見光。但是由于熒光燈工作的負阻特性,在使用時須配用鎮流器件。
2 有關熒光燈的燈絲預熱
國際電工委員會標準IEC929和我國的專業標準ZBK74012-90,都有關于電子鎮流器在“正常情況下使用時,應使燈啟動,但不對燈性能造成損害”;“施加陰極預熱電壓的最短時間應不少于0.4s”和“開路電壓的波峰系數不得超過1.8;在最低預熱期間,不得產生即使是極窄的、不影響有效值的電壓峰值”等規定。
預熱啟動是指在燈陰極被加熱至熱電子發射溫度后才觸發燈。通常采用控制陰極電流進行預熱或控制陰極電壓進行預熱的方式。無論采用哪種方式啟動,都應滿足下列要求:
1)在燈陰極達到電子發射狀態之前,燈兩端之間或燈與啟動輔助裝置之間的開路電壓應保持在低于導致陰極受損害的輝光放電的水平;
2)在陰極達到發射狀態之后,開路電壓應足夠高,可使燈迅速啟動而無須重復多次才能啟動;
3)在陰極已處于發射狀態,若開路電壓須升高后才能使燈啟動,則開路電壓從低到高的轉變過程中,必須在陰極仍處于熱電子發射溫度期間完成;
4)在陰極預熱階段,預熱電流或預熱電壓不得過大或過高而使陰極上發射物質因過熱而受到損害。
燈陰極預熱啟動可分為以下兩種情況。
2.1 采用控制燈陰極電流進行的燈絲預熱
2.1.1 有效預熱電流和發射時間(te)
為使某一類型陰極達到最低發射溫度所需的熱量,可用時間、電流和由該類陰極的物理特性所決定的一個常數來表示。這種關系可由式(2)表示。
式中:te為達到發射狀態的時間,≥0.4s(1);
a為特定類型陰極的常數;
ik為獲得te所需的最小燈絲有效預熱電流(A);
im為達到發射狀態所需的燈絲最小電流絕對值(A)(2);
注:(1)達到發射狀態的預熱時間
【熒光燈常用燈絲預熱電路】相關文章:
AGC電路的設計03-07
電路原理考試大綱11-22
電路設計參考文獻02-24
淺談電路分析英漢雙語教學03-20
IPM驅動和保護電路的研究03-20
錯誤檢測與糾正電路的設計與實現03-20
低功耗模擬前端電路設計11-18
淺談模擬電路故障原因與診斷方法03-18
2FSK集成調制解調電路03-07